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Goals of Bayesian statistics

1. Set up a (probabilistic) model based on hypothesis of
interest

2. Condition that model on observed data

3. Draw inferences, evaluate its fit and implications
Gelman et al. 2014 Bayesian Data Analysis. Third Edition
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In a Bayesian framework

We are always interested in knowing the posterior distribution

P (θ|D) ∝ P (D|θ) P (θ)



What is a prior distribution P (θ)?

In simple terms it is our hypothesis

I It is subjective because it is an informed assumption
I We need clarify how it is set up (elicit priors)
I We usually set our hypothesis via parameters that are

unknown and random
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Hypothesis: Red flowers evolve into blue and vice versa

θ = (qBR, qRB)
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The prior distribution: P (θ)

By selecting a blue exponential faster than the red we are
implicitly saying that evolution from blue to red has

happened more frequently than red to blue



The prior distribution: P (θ)

By selecting a blue exponential faster than the red we are
implicitly saying that evolution from blue to red has

happened more frequently than red to blue



D is our data
We go into our favorite herbarium, field site, or green house
and we collect color of multiple species

How do we integrate our model θ and our data D ?



Calculating the likelihood P (D|θ)

I Likelihood function: Probability of the sample given the
hypothesis

I Is it a probability?

Yes for the sample. BUT NO! for the
parameters

I In likelihood framework then the parameters are unknown
but fixed

I Implications: parameters do not have a probability
distribution, and it is more complicated to assess their
uncertainty
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Calculating the likelihood is computationally
challenging

Thousands of optimizations to find maximum likelihood
estimates and confident intervals
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Where does the posterior come from?

Bayes theorem (conditional probabilities)

P (θ|D) =
P (θ,D)

P (D)
=
P (D|θ)P (θ)

P (D)

Why do we ignore P (D) and put a symbol ∝?

P (θ|D) ∝ P (D|θ) P (θ)

Because P (D) is the probability of the sample and does not
contain information about θ
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Making inferences with the posterior distribution

I The posterior distribution is a probability.

I Measures the uncertainty of the hypothesis after being
confronted to data (update of my hypothesis)

I We need explore it thoroughly (MCMC quality).
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